Jetstream 41
General Data

August 2006
Contents

Introduction
Jetstream 41 operators
Dimensions
  Basic Jetstream 41 dimensions
Passenger cabin features
  Cabin interior
  Cabin configurations
  Doors, exits & stowages
Freighter
Corporate aircraft
  VIP interiors
Technical overview
  Rugged structure
  Well equipped flight deck
  Simple flying controls
  Quiet efficient powerplants
  Low noise characteristics
Landing Gear
Maintenance
  World Fleet Dispatch Reliability
  Maintenance access
  Maintenance planning
  MACRO programme
  Engine Maintenance Cost Protection

Customer Support
  Regional aircraft locations
  World fleet Dispatch reliability
  Maintenance access
  Maintenance planning
  Airframe maintenance - MACRO
  Engine maintenance
  Spares logistics
  Structural repair agreement
  Field service representation
  Customer training
  Operations support
  Vendor support
  Technical support
Performance
  Performance characteristics
    Jetstream 41
    • Basic Data
    • Take-off performance
    • Payload Range
Freighter aircraft
  Freighter payloads
Economics
  Economic analysis
    Jetstream 41
    • Economic results
Introducing **the Jetstream 41**

The Jetstream 41 was designed to meet the demanding needs of regional airlines with a focus on quality and low operating costs.

The Jetstream 41 is a major development of the successful Jetstream 31/ Super 31 family. The aircraft first entered service in 1993 with Logan Air. Just over 100 aircraft were built before production ended in 1997.

It has been configured to meet the needs of operators across the world.

The Jetstream 41 offers an optimum solution to meet market requirements - a careful balance of competitive performance, comfort and reliability at minimum cost.
The Jetstream 41 remain in-service to-date with operators spread across the world.

The world wide fleet distribution is successfully supported by BAE SYSTEMS in all the regions.

The majority of the fleet are passenger aircraft though some have been converted to VIP interiors or special mission configurations.
Dimensions
Jetstream 41 Dimensions

Overall length 19.33m/ 63ft 5in
Wingspan 18.42m/ 60ft 0in
Length 5.61m/ 18ft 5in
Passenger headroom 1.78m/ 5ft 10in
The Jetstream 41 gives the interior feel of a much larger aircraft, leading to the instant passenger acceptability required for today's regional services connecting with large jets.

- Light, spacious and airy cabin with strong passenger appeal
- 29 & 30 seat layouts
- Stand up headroom of over 1.78m (5ft 10in)
- Flexibility to offer all levels of cabin service
- Total baggage capacity of over 9ft³ per passenger
Cabin Configurations

The design of the Jetstream 41 interior has benefited from the experience of the Jetstream 31.

Cabin layouts and features have been chosen to offer maximum operational flexibility.

- 29 seat layout with galley
- 30 seat layout without galley
- 31” or 30” seat pitch
- Large fwd carry-on stowage
- 1.78m/ 5ft 10in headroom
The overall baggage capability on the Jetstream 41 is over 0.25m³/9ft³ per passenger.

- Rear baggage bay of 4.8m³/ 170ft³ capacity with large 1.22 x 1.32m/48” x 52” door
- Carry on stowage with 0.61m³/21.5ft³ volume
- Additional stowage with 0.22m³/ 7.9ft³ volume
- Ventral baggage pod with 1.35m³/ 47.5ft³ volume for extra loading flexibility and ideal for both checked and tagged carry on baggage
In recognition of the potential demand for a small, 3 to 4 tonne bulk freighter, BAE Systems is studying options for 3rd party conversion of J41 passenger aircraft to ‘E’ class freighters.

‘E’ Class freight compartments maximise the volume available for freight payload by eliminating the need for crew access to the cargo compartment in the event of fire.
The J41 is well suited to the freighter role with its large cabin cross-section and existing large rear baggage door.

Once the aircraft is converted, the baggage door can serve as a freight door. In this role, full advantage can be taken of its attributes:

- Plug type door
- Opens inwards
- Tracks upwards
- 1.346m wide X 1.295m high
- 1.651m sill height
- Located at rear of aircraft

**Fuselage Cross-Section**
- 1.784 m max cabin height
- 1.85 m cabin width
The conversion to bulk freight operations involves stripping out of the passenger cabin interior and installation of a cargo interior including smoke detection system, cabin liners and barrier nets.

Crew access is maintained through the forward passenger door whilst the rear baggage door serves as the freight door.

Typically, the compartment will feature 5 freight zones separated by five 9G vertical nets and a forward smoke curtain.

**‘E’ CLASS FREIGHT INTERIOR**

- Smoke detectors and flight deck annunciators
- Flight deck door smoke seal
- LED Cargo compartment lights
- Barrier netting for 5 compartments
- Composite cargo compartment liners
Flight deck Changes

Changes to the flight deck include modification of the central warning system and central display system to reflect the change from passenger to freighter role.

A dedicated panel provides control and indication for the smoke detection system and the emergency cut off of ventilating air to the cargo compartment.

- Central warning display changes
- Dedicated smoke detector panel
- Individual warnings for 4 X smoke detectors
- Cockpit air isolation switch
Configured with an ‘E’ Class freight interior, the full cabin length including the rear baggage bay becomes available for freight - over 30 cubic metres.

Payload potential is over 3.5 Tonnes representing a cargo density of around 112 Kg/m³

Potential freight volume
- Aft cargo compartment 4.80 m³ 170 Ft³
- Main cabin 29.45 m³ 1,040 Ft³
- Less forward vestibule volume - 3.00 m³ - 106 Ft³
- Total useful cargo compartment volume 31.25 m³ 1,104 Ft³

Potential structural limited payload
- Maximum zero fuel weight 9,707 Kg 21,400 lb
- Estimated Operating weight empty * 6,190 Kg 13,650 lb
- Structural payload limit 3,517 Kg 7,750 Lb

Potential volume limited payload
- Volume payload limit @ 112 Kg/ m³ 3,500 Kg 7,716 lb

* Estimate based on typical in-service aircraft less passenger furnishings and with addition of an ‘E’ class interior
Corporate Aircraft
The spacious, adaptable cabin of the Jetstream 41 offers unique accommodation for a wide range of potential customised interiors which can be designed and installed by 3rd party specialist centres.

In addition to VIP interiors, the Jetstream 41 has been successfully transformed into a luxurious aircraft for corporate travel.

Example 19 seat corporate layout
Technical overview
Rugged Structure

The design of the Jetstream 41 is based on the service proven Jetstream 31 using only materials which are backed by comprehensive test data and have good service histories.

Inspection periods and thresholds are based on MSG-3 maintenance logic and the design, where possible, uses alternative load paths so enabling structural inspections to be limited to simple visuals.

- Rugged design for demanding regional operations
- Extensive use of traditional materials allows easy repair and inspection
- Highly effective corrosion protection
The flight deck has been designed around a four-tube EFIS system for maximum comfort and minimum crew fatigue over demanding regional multi-sector routes.

Operational
- Honeywell Digital Flt Director
- CAT2 landing system
- Primus 650 colour weather radar
- Integrated engine system
- Bendix/King CAS66A TCAS
- Honeywell EGPWS

Communications
- Primus VHF comms & transponder combines VOR/ILS/MB receiver, ADF & DME
- Universal CVR
- Fairchild FDR

Navigation
- Dual AHS600 AHRS
- RT300 Radio altimeter
Simple Flying Controls

The design philosophy behind the Jetstream 41 flying control system takes into consideration the need for simple, yet effective, system layout.

- Impressive handling qualities
- Efficient flap system for excellent airfield performance
- Automatic ground spoilers for improved braking efficiency

• Primary flying controls
  - Fully manual aileron, elevator and rudder controls
  - Designed to JAR/FAR 23 requirements

• Secondary flying controls
  - Manual aileron, elevator and rudder trim systems
  - Hydraulic wing flaps and ground spoiler systems
Quiet, efficient Powerplants

- Fuel efficient Garrett TPE331-14 engines
- Cost effective 5 bladed McCauley metal propellers
- Single shaft simplicity
- Modular engine design for easy maintenance and low spares holding
- 1650SHP/1500SHP conservative engine ratings
- Automatic Power Reserve (APR) system
- Digital supervisory control in conjunction with a full authority hydro-mechanical fuel control
- Health & trend monitoring to optimise time between shop visits
Low noise Characteristics

- Furnishing panels form an inner shell acoustically isolated from the fuselage structure.

- Attention paid to acoustic gap sealing, the fitting of isolation bags and to the selection of noise attenuation materials.

- Overall attenuation of the furnished cabin is 17dBA relative to the bare structural shell.

1650 shp engine rating

<table>
<thead>
<tr>
<th></th>
<th>Lateral</th>
<th>Flyover</th>
<th>Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise level</td>
<td>84.3</td>
<td>86.5</td>
<td>87.8</td>
</tr>
<tr>
<td>Stage 3 Limit</td>
<td>94</td>
<td>89</td>
<td>98</td>
</tr>
</tbody>
</table>

Many years of experience gained with the Jetstream 31 was applied to the noise reduction on the Jetstream 41 both in the cabin and externally.
The Jetstream 41 has a tricycle landing gear with two wheels on each leg. The legs retract forwards; the nose leg in to the front fuselage forward of the pressure bulkhead and main legs into the underside of the engine nacelles. All the fairing doors are mechanically operated by the landing gear movement.

- Rugged, low drag design
- Electronic anti-skid
- Dunlop steel rotor brake pack
- Powered steering
Maintenance & Customer Support
BAE Systems’ Regional Aircraft division headquarters at Prestwick is home to Customer Support and Engineering.

Jetstream 41 training facilities are located at Woodford with spares stocks at Weybridge, close to London’s international airports.

Additional support is provided from facilities in Washington DC.
The Jetstream 41 world wide fleet maintains an average dispatch reliability of over 98.8% in the demanding multi sector regional airline operating environment.
Maintenance plans have been developed for the Jetstream 41 based on MSG-3 logic. The plans take into account ongoing in-service experience and allow checks to be broken down into equalised check programmes.

The plans can be tailored to suit individual operator’s needs.

### Nominal check intervals are currently:

<table>
<thead>
<tr>
<th>Maintenance Level</th>
<th>Interval Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Flight</td>
<td>Completed prior to first flight of each calendar day</td>
</tr>
<tr>
<td>Pre-Departure</td>
<td>Completed prior to each aircraft departure</td>
</tr>
<tr>
<td>Daily Check</td>
<td>Within 24 hours preceding first flight</td>
</tr>
<tr>
<td>Service Check</td>
<td>Intervals not exceeding 3 days</td>
</tr>
<tr>
<td>A Check</td>
<td>Every 300 flight hours</td>
</tr>
<tr>
<td>C Check</td>
<td>Every 3000 flight hours</td>
</tr>
</tbody>
</table>
Airframe maintenance - MACRO

Airframe rotatable spares provisioning and repair and overhaul programmes for the Jetstream 41 can be tailored to the needs and capabilities of individual operators through fixed cost pay by the hour packages.

MACRO Programme
The recommended programme, MACRO, is backed by BAE SYSTEMS. This offers an airframe rotatable component by the hour service with a minimum initial spares investment.

The programme covers three distinct areas:
- Provision of an agreed on-site spares package.
- Repair and overhaul of airframe rotatable components.
- Advance exchange service for all airframe rotatable components.

REPLACEMENT FROM ONSITE
ONSITE STOCK
REPLENISH ONSITE

PART BECOMES UNSERVICABLE

REPLACEMENT FROM POOL
BAE SYSTEMS POOL STOCK (Weybridge)

PART RETURNED TO BAE SYSTEMS

R & O LOOP.

ROTABLE REPAIRS
Honeywell's Engine maintenance programme provides engine overhaul for a fixed hourly cost which is typically based upon the following operational elements:

- Average sector length
- Engine thrust management techniques
- Operational environment
- Annual utilisation

The plan covers parts and repair labour for scheduled and unscheduled maintenance and Category 1 and 2 Service Bulletins released after engine enrolment.

BAE SYSTEMS can assist Jetstream 41 operators in obtaining quotes from Honeywell.
• Spares operations for the world-wide fleet of Jetstream 41 aircraft is provided by:

  - Maintenance help desk manned 24 hours a day.

  - Spares Logistics Centre at Weybridge close to London Heathrow.

  - Additional spares store in Washington DC, USA.

• Direct access to the inventory through the SPEC 2000 computer system and the internet.
Structural Repair Agreement

Included in the portfolio of services provided by Regional Aircraft's Customer Support organisation is a Structural Repair Agreement.

This is an optional arrangement whereby, for a fixed annual subscription, BAE SYSTEMS will provide a range of services in the event of in-service damage to a Jetstream 41.

- On-site structural damage assessment of customer aircraft
- Temporary repair scheme or service concession prior to provision of final repair solution
- Customer repair drawings, repair instructions and on-site structural assessments on demand from the customer.
- Provision of responses to airframe structural technical queries
- Assistance in use of the airframe structural documentation
- Provision of CAA approved repair schemes by way of a repair drawing or repair instruction
Field Service Representation

• Participation in daily meetings with airline

• Troubleshooting

• Reviewing and progressing outstanding issues.

• Liaising with BAE SYSTEMS customer support.

• Setting up lines of communication.

• Building relationships with key vendors.

• Ensuring BAE Systems is aware of any AOG.

To assist with the entry into service of the Jetstream 41, experienced Field Service Representatives are available to assist new operators.

These personnel become resident with the airline assisting the technical staff as they familiarise themselves with the aircraft and guiding them as they interface with various parts of the BAE Systems Regional Aircraft Customer Support organisation.
Pilot’s ground school, cabin crew, engineering and management familiarisation training courses, are provided at BAE Systems’ dedicated facility at its Woodford site.

Although the use of a simulator for the provision of training is always recommended it is possible to complete a Jetstream 41 Type Rating course using a combination of classroom and ‘on-aircraft’ training.

Five multi-media, purpose built class rooms, a cockpit procedures trainer and a wide range of audio visual programmes are available.

Typical customer training programmes

• Pilots - 10 days ground school,
  - 9 off 4 hour simulator sessions

• Cabin crew - 3 days

• B1 Maintenance - 15 days (Airframe, engine, electrical power, avionic LRU’s)

• B2 Maintenance - 7 days (Electrical power, avionics)

• Avionics Black Box Extension - 3 days

• TPE331-14G/HR Engine - 5 days

• Recurrent / Trouble shooting - 5 days

* Course prices available on application
BAE SYSTEMS TOGETHER WITH ITS PARTNER EAG CAN PROVIDE

- Weight and balance material including loading aids
- Analysis of specific operational issues
- Airfield performance data and software

In addition to pilot training, BAE SYSTEMS can provide ongoing support to customer's operations, advising and assisting with the introduction of new destinations, challenging airfields and operational issues.

BAE SYSTEMS has also partnered with the European Aeronautical Group for the provision of Jetstream 41 software services, in particular Airfield Performance data. EAG provide a range of navigational and flight planning services from their base in Stockholm, Sweden.
The approach to vendor issues by BAE Systems’ Regional Aircraft division is encapsulated in its RACAP programme (Regional Aircraft Cost Advantage Programme).

The RACAP team is a multidisciplinary group representing a broad range of specialities across the business. The team is tasked with continuous review of cost drivers and aircraft delay causes and the identifying of solutions which will improve these indicators. Vendor liaison forms a key part of this initiative.

- Cost reduction team based at Prestwick (RACAP team)
- Data feedback from operators continuously analysed and published.
- Regular liaison with major vendors.
- Continuous maintenance planning development to drive up service intervals
Technical Support

- Maintenance planning
- Continued Airworthiness support
- Technical queries
  - Repair Design Office
  - AOG technical support
- Modifications and Service Bulletins
- Maintenance and Operators manuals
- Illustrated parts catalogues
- Publishing & graphic design
- CD-ROM and On-line publications (via ISDN, Intranet and Internet)

A wide range of other Technical Support services is available from BAE Systems covering simple technical queries to assistance with Maintenance Planning.

An extensive library of customised Technical Manuals can be provided in various hard copy and electronic formats.
Jetstream 41 performance
Performance Characteristics

- Performance matched to the needs of regional operations
- Favourable low fuel burns
- Competitive block times
- Operations from 1200m (4000ft) runways
- Ability to operate 2 one hour sectors without refuelling
Jetstream 41 aircraft are equipped with either the 1500shp or the 1650shp engine variant.

Automatic Power Reserve (APR) provides contingency thrust on the live engine following engine failure during take-off or on go-around.
Jetstream 41 Take-Off Performance

Performance comparison for a 2,000ft airfield at ISA+15°C

Runway Length (m)

TOW (kg)

1500SHP

1650SHP
## Basic Data - Jetstream 41

<table>
<thead>
<tr>
<th>Aircraft weights</th>
<th>Kg</th>
<th>lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Take-off Weight</td>
<td>10,886</td>
<td>24,000</td>
</tr>
<tr>
<td>Maximum Landing Weight</td>
<td>10,569</td>
<td>23,300</td>
</tr>
<tr>
<td>Maximum Zero Fuel Weight</td>
<td>9,707</td>
<td>21,400</td>
</tr>
</tbody>
</table>

### Passenger version

<table>
<thead>
<tr>
<th>Typical Operating Weight Empty*</th>
<th>6,800</th>
<th>14,988</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum structural payload</td>
<td>2,907</td>
<td>6,412</td>
</tr>
<tr>
<td>29 Passengers @ 95 Kg</td>
<td>2,755</td>
<td>6,074</td>
</tr>
</tbody>
</table>

### Freighter version

<table>
<thead>
<tr>
<th>Typical Operating Weight Empty</th>
<th>6,190</th>
<th>13,650</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum structural payload</td>
<td>3,517</td>
<td>7,750</td>
</tr>
</tbody>
</table>

* Estimates based on typical in-service aircraft
Jetstream 41 Payload Range

Passenger version

Freighter version

ASSUMPTIONS:
- ISA+10C, still air
- Long range cruise
JAR RESERVES:
- 5% trip fuel
- Overshoot at destination
- 30 min. hold at 1,500ft at alternate
100nm diversion and approach
Jetstream 41 economics
The Jetstream 41 costs presented in this section are based on standard industry assumptions and cover the major direct cost elements. The purchase prices, aircraft lease rates and hull values quoted are for budgetary purposes only. The freighter costs assume that the operator leases the airframe and installs the freight interior at the budgetary price shown.

The maintenance costs represent a reasonable budgetary provision for a typical airline fleet operation. However, the size of the fleet, average sector length, operating environment, level of in-house expertise, subcontract and internal labour rates will all have an impact on the actual costs experienced.
### Aircraft ownership

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/C Lease rate</td>
<td>$25,000/Month</td>
</tr>
<tr>
<td>Freighter conversion</td>
<td>$300,000 amortised over 8 years to 10%</td>
</tr>
<tr>
<td>Spares</td>
<td>15% of aircraft value</td>
</tr>
<tr>
<td>Insurance</td>
<td>0.9% of hull value</td>
</tr>
</tbody>
</table>

### Variable costs

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel price</td>
<td>$2.0/USg</td>
</tr>
<tr>
<td>Aircraft utilisation</td>
<td></td>
</tr>
<tr>
<td>- J41</td>
<td>2000 BH/Annum</td>
</tr>
<tr>
<td>- J41F</td>
<td>1000 BH/Annum</td>
</tr>
<tr>
<td>Captain’s salary</td>
<td>$85,000/Annum</td>
</tr>
<tr>
<td>1st Officer’s salary</td>
<td>$45,000/Annum</td>
</tr>
<tr>
<td>Flight crew hours</td>
<td>600/Annum</td>
</tr>
<tr>
<td>Salary (Pax aircraft only)</td>
<td>$27,000/Annum</td>
</tr>
<tr>
<td>Cabin crew hours</td>
<td>1000/Annum</td>
</tr>
<tr>
<td>Cabin crew on board</td>
<td>1</td>
</tr>
</tbody>
</table>

### Maintenance

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pax aircraft (2000 BH/Ann)</td>
<td></td>
</tr>
<tr>
<td>Airframe</td>
<td>$170/FH + $27/FC</td>
</tr>
<tr>
<td>Engine</td>
<td>$66/FH + $24/FC</td>
</tr>
<tr>
<td>Cargo aircraft (1000 BH/Ann)</td>
<td></td>
</tr>
<tr>
<td>Airframe</td>
<td>$208/FH + $27/FC</td>
</tr>
<tr>
<td>Engine</td>
<td>$66/FH + $24/FC</td>
</tr>
<tr>
<td>Landing fees</td>
<td>$10/Tonne of MTOW</td>
</tr>
<tr>
<td>Eurocontrol</td>
<td>$50 National unit rate</td>
</tr>
</tbody>
</table>
## Direct costs - Jetstream 41

### Aircraft type - Jetstream 41

<table>
<thead>
<tr>
<th>Sectors</th>
<th>Sector data</th>
<th>Ownership costs</th>
<th>Variable costs</th>
<th>Total cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>From</td>
<td>To</td>
<td>From</td>
<td>To</td>
<td>Dist Km</td>
</tr>
<tr>
<td>XXX</td>
<td>XXX</td>
<td>100</td>
<td>0.40</td>
<td>0.32</td>
</tr>
<tr>
<td>XXX</td>
<td>XXX</td>
<td>200</td>
<td>0.63</td>
<td>0.55</td>
</tr>
<tr>
<td>XXX</td>
<td>XXX</td>
<td>300</td>
<td>0.87</td>
<td>0.78</td>
</tr>
<tr>
<td>XXX</td>
<td>XXX</td>
<td>400</td>
<td>1.07</td>
<td>0.98</td>
</tr>
<tr>
<td>XXX</td>
<td>XXX</td>
<td>500</td>
<td>1.28</td>
<td>1.20</td>
</tr>
<tr>
<td>XXX</td>
<td>XXX</td>
<td>600</td>
<td>1.48</td>
<td>1.40</td>
</tr>
<tr>
<td>XXX</td>
<td>XXX</td>
<td>700</td>
<td>1.70</td>
<td>1.62</td>
</tr>
<tr>
<td>XXX</td>
<td>XXX</td>
<td>800</td>
<td>1.92</td>
<td>1.83</td>
</tr>
<tr>
<td>XXX</td>
<td>XXX</td>
<td>900</td>
<td>2.12</td>
<td>2.03</td>
</tr>
<tr>
<td>XXX</td>
<td>XXX</td>
<td>1000</td>
<td>2.33</td>
<td>2.25</td>
</tr>
</tbody>
</table>

### Aircraft type - Jetstream 41F

<table>
<thead>
<tr>
<th>Sectors</th>
<th>Sector data</th>
<th>Ownership costs</th>
<th>Variable costs</th>
<th>Total cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>From</td>
<td>To</td>
<td>From</td>
<td>To</td>
<td>Dist Km</td>
</tr>
<tr>
<td>XXX</td>
<td>XXX</td>
<td>100</td>
<td>0.40</td>
<td>0.32</td>
</tr>
<tr>
<td>XXX</td>
<td>XXX</td>
<td>200</td>
<td>0.63</td>
<td>0.55</td>
</tr>
<tr>
<td>XXX</td>
<td>XXX</td>
<td>300</td>
<td>0.87</td>
<td>0.78</td>
</tr>
<tr>
<td>XXX</td>
<td>XXX</td>
<td>400</td>
<td>1.07</td>
<td>0.98</td>
</tr>
<tr>
<td>XXX</td>
<td>XXX</td>
<td>500</td>
<td>1.28</td>
<td>1.20</td>
</tr>
<tr>
<td>XXX</td>
<td>XXX</td>
<td>600</td>
<td>1.48</td>
<td>1.40</td>
</tr>
<tr>
<td>XXX</td>
<td>XXX</td>
<td>700</td>
<td>1.70</td>
<td>1.62</td>
</tr>
<tr>
<td>XXX</td>
<td>XXX</td>
<td>800</td>
<td>1.92</td>
<td>1.83</td>
</tr>
<tr>
<td>XXX</td>
<td>XXX</td>
<td>900</td>
<td>2.12</td>
<td>2.03</td>
</tr>
<tr>
<td>XXX</td>
<td>XXX</td>
<td>1000</td>
<td>2.33</td>
<td>2.25</td>
</tr>
</tbody>
</table>
This document is supplied by BAE SYSTEMS, on the express condition that it be treated as confidential and shall not be reproduced.

No use may be made of it other than that expressly authorised. This document is for information only and is based on assumptions made by BAE SYSTEMS. No reliance should be placed by the recipient on the information contained in this document. It is not an offer, condition or warranty of any contract, nor is it to be used in connection with the operation or maintenance of any aircraft for which specific manuals have been issued.